Добро пожаловать на наш портал !

Методы компьютерного моделирования экономических процессов

Простейшая задача оптимального управления

Простейшая задача оптимального управления. Один из приемов, применяемых для решения экстремальных задач, состоит в выделении некоторой проблемы, допускающей относительно несложное решение, к которой в дальнейшем могут быть сведены остальные задачи.

Рассмотрим так называемую простейшую задачу управления. Она имеет вид

Специфика условий задачи (6.27)-(6.29) состоит в том, что функции качества управления (6.27) и ограничения (6.28) являются линейными относительно zt, в то же время функция g(t, хt), входящая в (6.28), может быть произвольной. Последнее свойство делает задачу нелинейной даже при t=1, т. е. в статическом варианте.

Общая идея решения задачи (6.27)-(6.29) сводится к ее «расщеплению» на подзадачи для каждого отдельно взятого момента времени, в предположении, что они успешно разрешимы. Построим для задачи (6.27)-(6.29) функцию Лагранжа

где λt — вектора множителей Лагранжа (t∊0:Т). Ограничения (6.29), носящие общий характер, в функцию (6.30) в данном случае не включены. Запишем ее в несколько иной форме

Необходимые условия экстремума функции Ф(х, z, λ) по совокупности векторов zt задаются системой уравнений

которая называется системой для сопряженных переменных. Как можно заметить, процесс нахождения параметров λt в системе (6.32) осуществляется рекуррентным образом в обратном порядке.

Необходимые условия экстремума функции Лагранжа по переменным λt будут эквивалентны ограничениям (6.28), и, наконец, условия ее экстремума по совокупности векторов хtХt, t∊1:(Т-1) должны быть найдены как результат решения задачи

Таким образом, задача поиска оптимального управления сводится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оптимальности. Это, свою очередь, сводится к нахождению таких t, t, t, удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максимума Понтрягина.