Добро пожаловать на наш портал !

Методы компьютерного моделирования экономических процессов

Решение ЦЗЛП методом ветвей и границ

Решение ЦЗЛП методом ветвей и границ. Рассмотрим применение алгоритма метода ветвей и границ для решения ЦЗЛП (4.2)-(4.3). Как уже упоминалось, через D(q) обозначается подмножество множества допустимых планов задачи. Перед началом первой итерации (q = 1) в качестве текущего множества берется все множество D (D(1) = D), после чего решается стандартная задача линейного программирования (D(1), f). Нетрудно заметить, что она является непрерывным аналогом

исходной задачи (4.2)-(4.3). Если найденный оптимальный план (1) содержит только целочисленные компоненты, то он является и оптимальным планом для (4.2)-(4.3): (1) = x*. В противном случае значение f( (1)) становится оценкой (верхней границей) значения целевой функции на множестве D(1), и мы переходим к выполнению стандартной итерации алгоритма. Опишем входящие в нее этапы.

1) Выбирается некоторая нецелочисленная компонента плана k(q). Поскольку в оптимальном плане она должна быть целой, то можно наложить ограничения xk ≤ [k(q)] и xk ≥ [k(q)]+1. Таким образом, D(q) разбивается на подмножества

Графическая интерпретация такого разбиения множества D(q) приведена на рис. 4.4.

2) Решаются задачи линейного программирования

Соответствующие максимальные значения целевой функции принимаются как ее оценки на этих множествах:

Если оптимальный план для одной из решенных задач удовлетворяет условию

и содержит только целые компоненты, то, значит, найдено решение основной задачи (4.2)-(4.3). В противном случае среди всех концевых подмножеств, полученных как на предыдущих (Di(q)), так и на текущем (D1(q), D2(q)) этапе, выбирается область с наибольшей оценкой ξ(Di(q)). Она становится текущим рассматриваемым подмножеством (D(q+1)). Далее производится перенумерация концевых множеств и вычислительный процесс итеративно повторяется.

При решении задач (D1(q), f) и (D2(q), f) можно воспользоваться результатами решения предыдущей задачи (D(q), f). Рассмотрим вариант организации вычислительного процесса на примере задачи (1(q), f) (для (2(q), f) он выглядит аналогично с точностью до знаков неравенств).

Предположим, что на последнем шаге решения задачи (D(q), f) был получен оптимальный базис β. Без ограничения общности можно считать, что он состоит из первых m столбцов матрицы задачи. Данное предположение делается исключительно для обеспечения наглядности дальнейшего изложения и очевидно, что его выполнения можно всегда добиться за счет простой перенумерации векторов аj. По аналогии с предыдущим параграфом введем обозначения для элементов матрицы задачи (D(q), f) и ее вектора ограничений относительно базиса :

Тогда система ограничений задачи (D(q), f) может быть представлена как

а получаемая на ее основе система ограничений задачи (1(q), f) как

или

где хn+1 ≥ 0 — фиктивная переменная, которой соответствует нулевой коэффициент в целевой функции, добавляемая для преобразования неравенства в строгое равенство.

Очевидно, что 1≤k≤m, т. к. небазисные компоненты оптимального плана (m+1≤j≤n) равны нулю, т. е. являются заведомо целочисленными. Тогда с учетом сделанных предположений о виде базиса можно записать:

Как видно из (4.39), в k-м столбце имеется всего два отличных от нуля элемента: в k-й и (m+1)-й строках. Если вычесть из (m+1)-го уравнения k-e, то, учитывая, что [άk] – άk =-{άk}, получим эквивалентную систему:

Проведенные преобразования системы ограничений D1(q) позволили явно выделить сопряженный базис, образуемый столбцами с номерами 1,..., m, n+1, и соответствующий ему псевдоплан (ά1, ..., άm, 0,...., 0, -{άk}), т.е. для решения задачи (D1(q), f) может быть применен алгоритм двойственного симплекс-метода. Практически вычислительный процесс для данного этапа сводится к преобразованию к симплекс-таблицы, показанному на рис. 4.5.

Для случая задачи (D2(q), f) преобразование симплекс-таблицы, получаемое на базе аналогичных рассуждений, приведено на рис. 4.6.

Очевидным недостатком алгоритма метода ветвей и границ при решении задач большой размерности является необходимость перебрать слишком большое количество вариантов перед тем, как будет найден оптимальный план. Однако он отчасти может быть преодолен, если ограничиться поиском не оптимального, а просто «хорошего» (близкого к оптимальному) плана. О степени такой близости и скорости приближения к экстремуму нетрудно судить по изменению значений оценок.

Подчеркнем, что приведенная реализация метода ветвей и границ является одной из многих. Помимо нее, например, очень популярна версия метода решения задачи коммивояжера, в которой для ветвления и построения оценок используют специфические свойства данной модели. При желании о ней можно прочесть в [1, 14].