Добро пожаловать на наш портал !

Методы компьютерного моделирования экономических процессов

Стандартная итерация

Стандартная итерация включает этапы:

1°. Отметка вершин сети. Обозначим множество вершин cети, отмеченных на предыдущих итерациях, как (на первой итерации ={i0}). Для каждой вершины i ищутся дуги, соединяющие ее с еще не помеченными вершинами-потомками j, модифицированная длина которых i,j = 0. Найденные таким способом вершины j помечаются числом mj = i, указывающим на «родителя». В том случае, когда сразу несколько дуг, имеющих i,j = 0, заканчиваются в одной и той же вершине j, значение для ее пометки выбирается произвольно.

Если среди вновь помеченных вершин окажется вершина t, то, значит, найден искомый путь (i0, i1,..., i(p-1), ip), где

на чем алгоритм завершается.

В случае, если вершины t нет среди отмеченных, и одновременно нельзя отметить ни одной новой вершины, то переходим к этапу 2.

2°. Преобразование значений модифицированных длин дуг. Для каждой вершины i ищутся дуги, соединяющие ее с еще не помеченными вершинами j, и находятся

Далее модифицированные длины всех дуг, которые соединяют отмеченные вершины с неотмеченными (i, j), уменьшаются на величину

в результате чего кратчайшие неиспользованные дуги получают нулевую модифицированную длину.

Затем происходит переход к следующей итерации.

Путь, построенный по методу Минти, будет кратчайшим. Это можно доказать с помощью индукции по номеру итерации, на которой была помечена вершина t, или, что то же самое, по количеству дуг, составляющих кратчайший путь. Если это произошло на первом шаге (что возможно только в случае, если начальная и конечная вершины соединены дугой нулевой длины), то доказываемое утверждение очевидно. Предположим,

что оно верно для всех пунктов, помеченных за первые r итераций, т. е. тех, которые достигаются переходом по r дугам. Тогда, если конечная вершина t помечена на (r + 1)-ой итерации, то полученный путь также будет кратчайшим, так как данная вершина помечается в результате минимально возможного продолжения одного из путей, полученного за предыдущие r итераций и являющегося по предположению кратчайшим.

Отметим, что описанный алгоритм пригоден для построения кратчайших путей на неориентированных графах.

Рассмотрим изложенный метод на конкретном примере, а именно: определим кратчайший путь из вершины 1 в вершину 6 для неориентированной сети, показанной на рис. 3.5.

На предварительном этапе вершина 1 отмечается числом m1 = 0, а модифицированные длины совпадают с заданными длинами дуг.