Добро пожаловать на наш портал !

Методы компьютерного моделирования экономических процессов

Условия неотрицательности компонентов вектора плана

3. Условия неотрицательности компонентов вектора плана:

х, хi,j ≥ 0, i l : m, j l : n. (15)

Существенной характеристикой описываемой модели является соотношение параметров аi и bj. Если суммарный объем производства равен суммарному объему потребления, а именно,

то система называется сбалансированной. При выполнении условия сбалансированности разумно накладывать такие ограничения на суммарный ввоз и вывоз груза, при которых полностью вывозится весь груз и не остается неудовлетворенных потребностей, т. е. условия (13) и (14) приобретают форму равенств.

По аналогии с задачей производственного планирования предположим, что затраты на перевозку прямо пропорциональны количеству перевозимого груза. Тогда суммарные затраты на перевозку в системе примут вид:

Функция (16) и описанные выше ограничения, записанные в форме

задают транспортную модель. На ее основе может быть сформулирована задача минимизации суммарных затрат на перевозки:

f(x)=cx → min, x D, (18)

которая в литературе получила название транспортной задачи в матричной постановке. Вообще говоря, транспортная задача является частным случаем задачи (11), но в силу ряда особенностей для ее решения применяются специфические методы, которые, помимо прочего, позволяют прийти к важным теоретическим обобщениям.

Общим для рассмотренных выше задач является то, что в них стоит проблема поиска наибольшего или наименьшего (оптимального) значения некоторой функции, отражающей цель управления системой, или, как еще говорят, целевой функции. Поиск оптимального значения осуществляется на некотором подмножестве допустимых значений переменных, описывающих состояние этой системы, именуемом множеством допустимых планов.

Пусть на некотором множестве D определена функция f(x). Напомним, что точка х*, принадлежащая D (х* D), называется точкой глобального максимума, если для любого x D выполняется неравенство f(x) ≤ f(x*). В этом случае значение f(x*) называется глобальным максимумом функции. Точка х̀́ называется точкой локального максимума, если существует некоторая окрестность этой точки, в любой точке которой значение функции меньше, чем в х́̀ (f(x) ≤ f(x́̀)). По аналогии, с точностью до знака неравенства, определяются глобальный и локальный минимумы. Обобщающим понятием для максимума и минимума является таксой термин, как экстремум (оптимум).